Step of Proof: fast-fib
11,40
postcript
pdf
Inference at
*
1
2
1
2
I
of proof for Lemma
fast-fib
:
1.
n
:
2. 0 <
n
3.
a
,
b
:
.
3.
{
m
:
|
3. {
k
:
.
3. {
(
a
= fib(
k
))
((
k
0)
(
b
= 0))
((0 <
k
)
(
b
= fib(
k
- 1)))
(
m
= fib((
n
- 1)+
k
))}
4.
a
:
5.
b
:
6.
b1
:
.
6.
{
m
:
|
6. {
k
:
.
6. {
(
a
+
b
= fib(
k
))
6. {
((
k
0)
(
b1
= 0))
6. {
((0 <
k
)
(
b1
= fib(
k
- 1)))
6. {
(
m
= fib((
n
- 1)+
k
))}
7. {
m
:
|
7. {
k
:
.
7. {
(
a
+
b
= fib(
k
))
7. {
((
k
0)
(
a
= 0))
7. {
((0 <
k
)
(
a
= fib(
k
- 1)))
7. {
(
m
= fib((
n
- 1)+
k
))}
{
m
:
|
{
k
:
.
{
(
a
= fib(
k
))
((
k
0)
(
b
= 0))
((0 <
k
)
(
b
= fib(
k
- 1)))
(
m
= fib(
n
+
k
))}
latex
by (D (-1))
CollapseTHEN ((InstConcl [
m
])
CollapseTHEN ((Auto
)
CollapseTHEN (Auto')
)
)
C
latex
C
1
:
C1:
7.
m
:
C1:
8.
k
:
.
C1: 8.
(
a
+
b
= fib(
k
))
C1: 8.
((
k
0)
(
a
= 0))
C1: 8.
((0 <
k
)
(
a
= fib(
k
- 1)))
C1: 8.
(
m
= fib((
n
- 1)+
k
))
C1:
9.
k
:
C1:
10.
a
= fib(
k
)
C1:
11. (
k
0)
(
b
= 0)
C1:
12. (0 <
k
)
(
b
= fib(
k
- 1))
C1:
m
= fib(
n
+
k
)
C
.
Definitions
,
s
=
t
,
-
n
,
n
-
m
,
,
A
,
False
,
Void
,
a
<
b
,
fib(
n
)
,
A
B
,
#$n
,
P
Q
,
n
+
m
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
t
T
,
,
{
x
:
A
|
B
(
x
)}
Lemmas
nat
wf
,
fib
wf
,
le
wf
origin